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Exact, positive definite expressions both in power series and in closed form are 
derived for the potential energy density in a continuously stratified incompressible 
fluid. They are useful for determining the energy of large displacements or mix- 
ing processes in regions of rapidly varying buoyancy frequency, such aa a sharp 
py cnocline . 

1. Introduction 
A simple expression for potential energy density in a vertically stratified in- 

compressible fluid is well known for the case of linearized fluid motion [see, for example, 
the books by Lighthill (1978), Turner (1973) and Yih (1965)I. Two versions of he 
expression are 

where [is the vertical displacement of a fluid particle, p,(z) is the undisturbed density, 
p;(z) is its derivative with respect to height z, and pe is the local deviation of the actual 
density from po, i.e. 

Pc = P -Po. (1.2) 

There will be circumstances, for example pb(z) 4 yPi(z), where (1.1) is a poor 
approximation, and where a more accurate expression is needed to determine the 
energy changes associated with large displacements or mixing processes in a stratified 
fluid. In this note, exact expressions in both series and closed form are derived for f l P .  

Although the derivation is straightforward, and other workers are likely to have 
obtained similar results, the exact theory has not previously been noted in the litera- 
ture aa far as we are aware. 

An interesting feature is that the results do not (in contrast to the usual theory of 
‘available potential energy ’) depend on any ‘ containment’ assumption: that is, the 
fluid need not be imagined to be contained within some (finite or infinite) fixed domain, 
across the boundaries of which there is no maas flux. 

In  the following paper (Andrews 1981) it is shown that similar results hold for a 
compressible fluid. 

8-2 



222 D.  Holliday and M .  E .  McIntyre 

2. Derivation 

fluid under gravity g may be written 

Du 
Dt 

The equations describing motion of an incompressible, vertically stratified ideal 

(2.1) P- = -VPe+gPe, 

v.u = 0, (2.3) 

where D/Dt = a / a t + u . V ,  g = ( O , O ,  - 9 )  (wumed constant for the moment), and 
the excess pressure 

where z is the vertical co-ordinate in a Cartesian co-ordinate system (2, y ,  z )  and 
where 

P e  = P - P O ( Z ) ,  (2.4) 

dP -2 = -gpo(z). 
dz 

Scalar multiplication of (2.1) by u and use of (2.2) and (2.3) yields 

where w is the vertical component of u, and where the kinetic energy density 

Ek +plUl*. 

We can develop the most useful notion of potential energy for these equations by 
imagining that the fluid motion is set up from the undisturbed state u = 0, p = po(z), 
p = po(z) .  Suppose that the fluid element at (x, t )  has moved a vertical distance 
{(x, t )  from its original, undisturbed position. Then 

pin) being the nth derivative of po(z). It can now be verified using (2.7) and the chain 
rule that the right-hand side of (2.9) is equal to DEp/Dt, where ED is the following 
function of z and 6: 

(2.10) 

(2.11) 

O D n  
E p  = 9 z 1 W !  ( - l)"pp(z) <"+I. 

Hence (2.6) becomes 
D 
-(Ek + ED) + V .  (PeU)  = 0, Dt 
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an exact expression of energy conservation in the desired form. We note that (I. 1) is 
just the leading term of (2.10). 

The series (2.10) can evidently be summed to give 

(2.12) 

exhibiting the positive-definite character of ED when the undisturbed stratification 
is stable everywhere: 

-gpi(z)  > 0, vz. (2.13) 

An alternative closed-form expression for Ep can be found when (2.13) holds, which 
for some purposes is more elegant since it expresses Ep as a non-negative function of 
po and pe, rather than of z and 6. This is possible because by (2.8) p contains all the 
Lagrangian information relevant to (2.12), when (2.13) holds.? Define the function 

(2.14) 

this function is a property of the undisturbed state and is a monotonically decreasing 
function of its argument when (2.13) holds. Then 

x{ 1 by 
X { P O ( Z ) )  = gz; 

J O  

The equivalence of (2.15) with (2.12) follows by noting from (2.14) that 

or 

since 

(2.15) 

(2.16) 

(2.17) 

by (2.8) and (1.2). A t  constant z, 

dpe = -pi(z-C)dC; (2.18) 

(2.16) and (2.18), with the dummy variables of integration g and pe substituted for 
s and pe, show that the two integrals (2.12) and (2.15) are equal. It is easy to check 
that (2.15) reduces to the last expression in (1.1) for small pe. 

As a simple example when pe is not small, take the cam of constant buoyancy 
(Brunt-Viiisiilii) frequency N ,  i.e. 

Then we obtain from (2.16) the exact formula 

(2.19) 

(2.20) 

The form (2.15) of our general result is valid, almost as it stands, when the gravita- 
tional field is non-uniform. We need only replace gz on the right of (2.14) by the 
gravitational potential @(x), and express po and po as functions of (0. 

t We may actually replace > in (2.13) by 2 ; a full discussion is given in McIntyre (1981). 
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3. Discussion 
Integrating (2.12) by parts and using (2.5) gives 

Ep = s@& - 6)  + Po(4  -P& - Y) * (3.1) 

This form is less useful in practice than the explicitly non-negative forms (2.12) and 
(2.15), but it has a simple physical interpretation and so makes it clearer, in turn, 
why the results of 52 are so simple. Consider a small unit volume of fluid thathas 
been moved quasi-statically from z - [to z by some external agency. The agency must 
do work g@o(z - 6 )  to overcome the external gravitational force. However, we should 
also include the work done against the basic pressure-gradient force, - Vpo, which is 
responsible for equilibrium. That work is po(z)  -po(z - c), and so the net work required 
is just the right-hand side of (3.1). 

Equation (2.10) shows that (1.1) is exact only if the fluid is linearly stratified. In 
other cases the accuracy of (1.1) depends on how rapidly p&z) changes. A common 
situation where (1.1) can make a significant error is in mixing processes or large 
vertical displacements that occur in the ocean at  or near a very sharp pycnocline. 

Numerical analyses of problems in stratified flow frequently utilize the total 
potential energy 

(see, for example, Warn-Varnas et al. 1979); the integral is taken over a domain 
bounded by fixed surfaces through which there is no mass flow. The relationship with 
our results can be seen as follows. Using (2.2), (2.3), and the identity 

Pbt = J9ZPdK 

(which itself depends on (2.3) as well as on the assumed boundary conditions), 
we obtain 

d dPbt -=s dt s dt gwp dV = gwp, dV = - / E p  fl 

where the last step usea (2.9) et seq., and the second last step the fact that the hori- 
zontal area integral of w vanishes at  each z ,  another consequence of (2.3) and the 
boundary condition of no mass flow. The relation (3.2) verifies the equivalence, in the 
circumstances assumed, between the conventional exact expression for potential 
energy changes in the whole fluid and the exact expression /End V derived from the 
conservation relation (2.1 1 ) . 

The relation between our results and the concept of ‘available potential energy’ 
(APE) used in meteorology is of interest. The APE would be defined in the present 
context aa 

APE = Ptot - Got, (3.3) 

where PMt denotes the value of P,,, for the undisturbed state and where a domain 
with fixed, impermeable boundaries is again assumed (Lorenz 1955). The definition 
(3.3) implies that the APE is zero for the undisturbed state, whence it follows from 
(3.2) that 

However the results of $ 2  are more general in the sense that, whemaa the APE is 

APE = J E p d V .  (3.4) 
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defined only globally, ED is defined locally by (2.15), is governed by the local con- 
servation relation (2.11)) and is independent of any assumptions about the boundary 
conditions. 
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